
B-splines

• B-splines automatically take care of continuity, with exactly

one control vertex per curve segment

• Many types of B-splines: degree may be different (linear,

quadratic, cubic,…) and they may be uniform or non-

uniform

– We will only look closely at uniform B-splines

• With uniform B-splines, continuity is always one degree

lower than the degree of each curve piece

– Linear B-splines have C0 continuity, cubic have C2, etc

Uniform Cubic B-spline on [0,1)

• Four control points are required to define the curve for 0t<1 (t is the
parameter)

– Not surprising for a cubic curve with 4 degrees of freedom

• The equation looks just like a Bezier curve, but with different basis
functions

– Also called blending functions - they describe how to blend the control
points to make the curve

       3

3

32

2

32

1

32

0

3

0

4,

6

1
3331

6

1
364

6

1
331

6

1

)()(

tPtttPttPtttP

tBPtx
i

ii






Basis Functions on [0,1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

t

• Does the curve interpolate its

endpoints?

• Does it lie inside its convex

hull?

B0,4

B1,4 B2,4

B3,4

 

 

 

 3

3

32

2

32

1

32

0

6

1

3331
6

1

364
6

1

331
6

1
)(

tP

tttP

ttP

tttPtx









Uniform Cubic B-spline on

[0,1)

• The blending functions sum to one, and are positive everywhere

– The curve lies inside its convex hull

• The curve does not interpolate its endpoints

– Requires hacks or non-uniform B-splines

• There is also a matrix form for the curve:

 













































10001

1333

4063

1331

6

1
)(

2

3

3210
t

t

t

PPPPtx

Uniform Cubic B-splines on

[0,m)

• Curve:

– n is the total number of control points

– d is the order of the curves, 2  d  n+1, d typically 3 or 4

– Bk,d are the uniform B-spline blending functions of degree d-1

– Pk are the control points

– Each Bk,d is only non-zero for a small range of t values, so the curve

has local control

X t   Pk Bk, d t 
k 0

n



Uniform Cubic B-spline Blending Functions

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t

B0,4 B1,4 B2,4 B3,4 B4,4 B5,4 B6,4

Computing the Curve

0

0.05

0.1

0.15

0.2

0.25

-3

-2
.7

-2
.3 -2

-1
.6

-1
.3

-0
.9

-0
.6

-0
.2

0
.1

0
.5

0
.8

1
.2

1
.5

1
.9

2
.2

2
.6

2
.9

3
.3

3
.6 4

4
.3

4
.7

t

   



n

k

kk tBPtX
0

4,

P0B0,4

P1B1,4
P2B2,4

P3B3,4

P4B4,4

P5B5,4

P6B6,4

The curve can’t start until there are 4 basis functions active

Using Uniform B-splines

• At any point t along a piecewise uniform cubic B-spline,
there are four non-zero blending functions

• Each of these blending functions is a translation of B0,4

• Consider the interval 0t<1
– We pick up the 4th section of B0,4

– We pick up the 3rd section of B1,4

– We pick up the 2nd section of B2,4

– We pick up the 1st section of B3,4

Demo

Uniform B-spline at Arbitrary t

• The interval from an integer parameter value i to i+1 is
essentially the same as the interval from 0 to 1

– The parameter value is offset by i

– A different set of control points is needed

• To evaluate a uniform cubic B-spline at an arbitrary
parameter value t:

– Find the greatest integer less than or equal to t: i = floor(t)

– Evaluate:

• Valid parameter range: 0t<n-3, where n is the number of
control points

   


 
3

0

4,

k

kki itBPtX

Loops

• To create a loop, use control points from the start of the

curve when computing values at the end of the curve:

• Any parameter value is now valid

– Although for numerical reasons it is sensible to keep it within a

small multiple of n

   


 
3

0

4,mod)(

k

knki itBPtX

Demo

B-splines and Interpolation,

Continuity

• Uniform B-splines do not interpolate control points, unless:

– You repeat a control point three times

– But then all derivatives also vanish (=0) at that point

– To do interpolation with non-zero derivatives you must use non-uniform B-

splines with repeated knots

• To align tangents, use double control vertices

– Then tangent aligns similar to Bezier curve

• Uniform B-splines are automatically C2

– All the blending functions are C2, so sum of blending functions is C2

– Provides an alternate way to define blending functions

– To reduce continuity, must use non-uniform B-splines with repeated knots

Rendering B-splines

• Same basic options as for Bezier curves

– Evaluate at a set of parameter values and join with lines

• Hard to know where to evaluate, and how pts to use

– Use a subdivision rule to break the curve into small pieces, and then

join control points

• What is the subdivision rule for B-splines?

• Instead of subdivision, view splitting as refinement:

– Inserting additional control points, and knots, between the existing

points

– Useful not just for rendering - also a user interface tool

– Defined for uniform and non-uniform B-splines by the Oslo

algorithm

Refining Uniform Cubic B-

splines

• Basic idea: Generate 2n-3 new control points:

– Add a new control point in the middle of each curve segment: P’0,1,
P’1,2, P’2,3 , …, P’n-2,n-1

– Modify existing control points: P’1, P’2, …, P’n-2

• Throw away the first and last control

• Rules:

• If the curve is a loop, generate 2n new control points by
averaging across the loop

• When drawing, don’t draw the control polygon, join the x(i)
points

   11, 6
8

1
' ,

2

1
  iiiijiji PPPPPPP

From B-spline to Bezier

• Both B-spline and Bezier curves represent cubic curves, so either can be

used to go from one to the other

• Recall, a point on the curve can be represented by a matrix equation:

– P is the column vector of control points

– M depends on the representation: MB-spline and MBezier

– T is the column vector containing: t3, t2, t, 1

• By equating points generated by each representation, we can find a

matrix MB-spline->Bezier that converts B-spline control points into Bezier

control points

MTPtx T)(

B-spline to Bezier Matrix























































































splineB

splineB

splineB

splineB

Bezier

Bezier

Bezier

Bezier

BeziersplineB

P

P

P

P

P

P

P

P

M

,3

,2

,1

,0

,3

,2

,1

,0

1410

0420

0240

0141

6

1

1410

0420

0240

0141

6

1

Rational Curves

• Each point is the ratio of two curves

– Just like homogeneous coordinates:

– NURBS: x(t), y(t), z(t) and w(t) are non-uniform B-splines

• Advantages:

– Perspective invariant, so can be evaluated in screen space

– Can perfectly represent conic sections: circles, ellipses, etc

• Piecewise cubic curves cannot do this











)(

)(
,

)(

)(
,

)(

)(
)](),(),(),([

tw

tz

tw

ty

tw

tx
twtztytx

B-Spline Surfaces

• Defined just like Bezier surfaces:

• Continuity is automatically obtained everywhere

• BUT, the control points must be in a rectangular grid

   
 


m

j

n

k

dkdjkj tBsBPtsX
0 0

,,,)(,

OK Not OK

Non-Uniform B-Splines

• Uniform B-splines are a special case of B-splines

• Each blending function is the same

• A blending functions starts at t=-3, t=-2, t=-1,…

• Each blending function is non-zero for 4 units of the

parameter

• Non-uniform B-splines can have blending functions starting

and stopping anywhere, and the blending functions are not

all the same

B-Spline Knot Vectors

• Knots: Define a sequence of parameter values at which the blending

functions will be switched on and off

• Knot values are increasing, and there are n+d+1 of them, forming a knot

vector: (t0,t1,…,tn+d) with t0  t1  …  tn+d

• Curve only defined for parameter values between td-1 and tn+1

• These parameter values correspond to the places where the pieces of the

curve meet

• There is one control point for each value in the knot vector

• The blending functions are recursively defined in terms of the knots and

the curve degree

 


 




otherwise 0

 1 1

1,

kk

k

ttt
tB

B-Spline Blending Functions

• The recurrence relation starts with the 1st order B-splines,

just boxes, and builds up successively higher orders

• This algorithm is the Cox - de Boor algorithm

– Carl de Boor was a professor here

   

 tB
tt

tt

tB
tt

tt
tB

dk

kdk

dk

dk

kdk

k
dk

1,1

1

1,

1

,






































Uniform Cubic B-splines

• Uniform cubic B-splines arise when the knot vector is of the form (-3,-

2,-1,0,1,…,n+1)

• Each blending function is non-zero over a parameter interval of length 4

• All of the blending functions are translations of each other

– Each is shifted one unit across from the previous one

– Bk,d(t)=Bk+1,d(t+1)

• The blending functions are the result of convolving a box with itself d

times, although we will not use this fact

Bk,1

B 0,1

0

0.2

0.4

0.6

0.8

1

1.2

-3

-2
.8

-2
.6

-2
.4

-2
.2 -2

-1
.8

-1
.6

-1
.4

-1
.2 -1

-0
.8

-0
.6

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

t

B
0

,1
(t

)

B 2,1

0

0.2

0.4

0.6

0.8

1

1.2

-3
-2
.8

-2
.6

-2
.4

-2
.2 -2

-1
.8

-1
.6

-1
.4

-1
.2 -1

-0
.8

-0
.6

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

t

B
2
,1

(
t
)

B 3,1

0

0.2

0.4

0.6

0.8

1

1.2

-3
-2
.8

-2
.6

-2
.4

-2
.2 -2

-1
.8

-1
.6

-1
.4

-1
.2 -1

-0
.8

-0
.6

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

t

B
3
,1

(
t
)

B 1,1

0

0.2

0.4

0.6

0.8

1

1.2

-3
-2
.8

-2
.6

-2
.4

-2
.2 -2

-1
.8

-1
.6

-1
.4

-1
.2 -1

-0
.8

-0
.6

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

t

B
1

,1
(
t
)

Bk,2

B 0,2

0

0.2

0.4

0.6

0.8

1

1.2

-3

-2
.8

-2
.6

-2
.4

-2
.2 -2

-1
.8

-1
.6

-1
.4

-1
.2 -1

-0
.8

-0
.6

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

t

B
0
,2

(t
)

B 1,2

0

0.2

0.4

0.6

0.8

1

1.2

-3
-2

.8
-2

.6
-2

.4
-2

.2 -2
-1

.8
-1

.6
-1

.4
-1

.2 -1
-0

.8
-0

.6
-0

.4
-0

.2 0
0.
2

0.
4

0.
6

0.
8 1

t

B
1

,2
(t

)

B 2,2

0

0.2

0.4

0.6

0.8

1

1.2

-3
-2

.8
-2

.6
-2

.4
-2

.2 -2
-1

.8
-1

.6
-1

.4
-1

.2 -1
-0

.8
-0

.6
-0

.4
-0

.2 0
0.
2

0.
4

0.
6

0.
8 1

t

B
2

,2
(
t
)










12 1

23 3
)(2,0

tt

tt
tB

Bk,3

B 0,3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-3

-2
.8

-2
.6

-2
.4

-2
.2 -2

-1
.8

-1
.6

-1
.4

-1
.2 -1

-0
.8

-0
.6

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

t

B
0
,3

(t
)

B 1,3

0
0.1

0.2
0.3
0.4

0.5
0.6

0.7
0.8

-3
-2
.8

-2
.6

-2
.4

-2
.2 -2

-1
.8

-1
.6

-1
.4

-1
.2 -1

-0
.8

-0
.6

-0
.4

-0
.2 0

0.
2

0.
4

0.
6

0.
8 1

t

B
1

,3
(t

)

 

















01

12 362

23 3

2

1
)(

2

2

2

3,0

tt

ttt

tt

tB

B0,4

B 0,4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-3

-2
.8

-2
.6

-2
.4

-2
.2 -2

-1
.8

-1
.6

-1
.4

-1
.2 -1

-0
.8

-0
.6

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

t

B
0

,4
(t

)

B0,4

 

 





















10 1

01 1333

12 521153

23 3

6

1
)(

3

23

23

3

4,0

tt

tttt

tttt

tt

tB

Note that the functions given on slides 4 and 5 are translates of this

function obtained by using (t-1), (t-2) and (t-3) instead of just t, and then

selecting only a sub-range of t values for each function

Interpolation and Continuity

• The knot vector gives a user control over interpolation and continuity

• If the first knot is repeated three times, the curve will interpolate the

control point for that knot

– Repeated knot example: (-3,-3,-3, -2, -1, 0, …)

– If a knot is repeated, so is the corresponding control point

• If an interior knot is repeated, continuity at that point goes down by 1

• Interior points can be interpolated by repeating interior knots

• A deep investigation of B-splines is beyond the scope of this class

How to Choose a Spline

• Hermite curves are good for single segments where you

know the parametric derivative or want easy control of it

• Bezier curves are good for single segments or patches where

a user controls the points

• B-splines are good for large continuous curves and surfaces

• NURBS are the most general, and are good when that

generality is useful, or when conic sections must be

accurately represented (CAD)

