
B-splines 

• B-splines automatically take care of continuity, with exactly 

one control vertex per curve segment 

• Many types of B-splines: degree may be different (linear, 

quadratic, cubic,…) and they may be uniform or non-

uniform 

– We will only look closely at uniform B-splines 

• With uniform B-splines, continuity is always one degree 

lower than the degree of each curve piece 

– Linear B-splines have C0 continuity, cubic have C2, etc 



Uniform Cubic B-spline on [0,1) 

• Four control points are required to define the curve for 0t<1 (t is the 
parameter) 

– Not surprising for a cubic curve with 4 degrees of freedom 

• The equation looks just like a Bezier curve, but with different basis 
functions 

– Also called blending functions - they describe how to blend the control 
points to make the curve 
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Basis Functions on [0,1) 
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• Does the curve interpolate its 

endpoints? 

• Does it lie inside its convex 

hull? 
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Uniform Cubic B-spline on 

[0,1) 

• The blending functions sum to one, and are positive everywhere 

– The curve lies inside its convex hull 

• The curve does not interpolate its endpoints 

– Requires hacks or non-uniform B-splines 

• There is also a matrix form for the curve: 
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Uniform Cubic B-splines on 

[0,m) 

• Curve: 

 

– n is the total number of control points 

– d is the order of the curves, 2  d  n+1, d typically 3 or 4 

– Bk,d are the uniform B-spline blending functions of degree d-1 

– Pk are the control points 

– Each Bk,d is only non-zero for a small range of t values, so the curve 

has local control 

 

X t   Pk Bk, d t 
k 0
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Uniform Cubic B-spline Blending Functions 
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Computing the Curve 
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The curve can’t start until there are 4 basis functions active 



Using Uniform B-splines 

• At any point t along a piecewise uniform cubic B-spline, 
there are four non-zero blending functions 

• Each of these blending functions is a translation of B0,4 

• Consider the interval 0t<1 
– We pick up the 4th section of B0,4 

– We pick up the 3rd section of B1,4 

– We pick up the 2nd section of B2,4 

– We pick up the 1st section of B3,4 



Demo 



Uniform B-spline at Arbitrary t 

• The interval from an integer parameter value i to i+1 is 
essentially the same as the interval from 0 to 1 

– The parameter value is offset by i 

– A different set of control points is needed 

• To evaluate a uniform cubic B-spline at an arbitrary 
parameter value t: 

– Find the greatest integer less than or equal to t: i = floor(t) 

– Evaluate: 

 

• Valid parameter range: 0t<n-3, where n is the number of 
control points 
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Loops 

• To create a loop, use control points from the start of the 

curve when computing values at the end of the curve: 

 

 

• Any parameter value is now valid 

– Although for numerical reasons it is sensible to keep it within a 

small multiple of n 
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Demo 



B-splines and Interpolation, 

Continuity  

• Uniform B-splines do not interpolate control points, unless: 

– You repeat a control point three times 

– But then all derivatives also vanish (=0) at that point 

– To do interpolation with non-zero derivatives you must use non-uniform B-

splines with repeated knots 

• To align tangents, use double control vertices 

– Then tangent aligns similar to Bezier curve 

• Uniform B-splines are automatically C2 

– All the blending functions are C2, so sum of blending functions is C2 

– Provides an alternate way to define blending functions 

– To reduce continuity, must use non-uniform B-splines with repeated knots 



Rendering B-splines 

• Same basic options as for Bezier curves 

– Evaluate at a set of parameter values and join with lines 

• Hard to know where to evaluate, and how pts to use 

– Use a subdivision rule to break the curve into small pieces, and then 

join control points 

• What is the subdivision rule for B-splines? 

• Instead of subdivision, view splitting as refinement: 

– Inserting additional control points, and knots, between the existing 

points 

– Useful not just for rendering - also a user interface tool 

– Defined for uniform and non-uniform B-splines by the Oslo 

algorithm 



Refining Uniform Cubic B-

splines 

• Basic idea: Generate 2n-3 new control points: 

– Add a new control point in the middle of each curve segment: P’0,1, 
P’1,2, P’2,3 , …, P’n-2,n-1 

– Modify existing control points: P’1, P’2, …, P’n-2 

• Throw away the first and last control 

• Rules: 

 

• If the curve is a loop, generate 2n new control points by 
averaging across the loop 

• When drawing, don’t draw the control polygon, join the x(i) 
points 
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From B-spline to Bezier 

• Both B-spline and Bezier curves represent cubic curves, so either can be 

used to go from one to the other 

• Recall, a point on the curve can be represented by a matrix equation: 

 

– P is the column vector of control points 

– M depends on the representation: MB-spline and MBezier 

– T is the column vector containing: t3, t2, t, 1 

• By equating points generated by each representation, we can find a 

matrix MB-spline->Bezier that converts B-spline control points into Bezier 

control points 

MTPtx T)(



B-spline to Bezier Matrix 
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Rational Curves 

• Each point is the ratio of two curves 

– Just like homogeneous coordinates: 

 

 

– NURBS: x(t), y(t), z(t) and w(t) are non-uniform B-splines 

• Advantages: 

– Perspective invariant, so can be evaluated in screen space 

– Can perfectly represent conic sections: circles, ellipses, etc 

• Piecewise cubic curves cannot do this 
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B-Spline Surfaces 

• Defined just like Bezier surfaces: 

 

 

• Continuity is automatically obtained everywhere 

• BUT, the control points must be in a rectangular grid 
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Non-Uniform B-Splines 

• Uniform B-splines are a special case of B-splines 

• Each blending function is the same 

• A blending functions starts at t=-3, t=-2, t=-1,… 

• Each blending function is non-zero for 4 units of the 

parameter 

• Non-uniform B-splines can have blending functions starting 

and stopping anywhere, and the blending functions are not 

all the same 



B-Spline Knot Vectors 

• Knots: Define a sequence of parameter values at which the blending 

functions will be switched on and off 

• Knot values are increasing, and there are n+d+1 of them, forming a knot 

vector: (t0,t1,…,tn+d) with t0  t1  …  tn+d 

• Curve only defined for parameter values between td-1 and tn+1 

• These parameter values correspond to the places where the pieces of the 

curve meet 

• There is one control point for each value in the knot vector 

• The blending functions are recursively defined in terms of the knots and 

the curve degree 
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B-Spline Blending Functions 

• The recurrence relation starts with the 1st order B-splines, 

just boxes, and builds up successively higher orders 

• This algorithm is the Cox - de Boor algorithm 

– Carl de Boor was a professor here 
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Uniform Cubic B-splines 

• Uniform cubic B-splines arise when the knot vector is of the form (-3,-

2,-1,0,1,…,n+1) 

• Each blending function is non-zero over a parameter interval of length 4 

• All of the blending functions are translations of each other 

– Each is shifted one unit across from the previous one 

– Bk,d(t)=Bk+1,d(t+1) 

• The blending functions are the result of convolving a box with itself d 

times, although we will not use this fact 



Bk,1 

B 0,1

0

0.2

0.4

0.6

0.8

1

1.2

-3

-2
.8

-2
.6

-2
.4

-2
.2 -2

-1
.8

-1
.6

-1
.4

-1
.2 -1

-0
.8

-0
.6

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

t

B
0

,1
(t

)

B 2,1

0

0.2

0.4

0.6

0.8

1

1.2

-3
-2
.8

-2
.6

-2
.4

-2
.2 -2

-1
.8

-1
.6

-1
.4

-1
.2 -1

-0
.8

-0
.6

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

t

B
2
,1

(
t
)

B 3,1

0

0.2

0.4

0.6

0.8

1

1.2

-3
-2
.8

-2
.6

-2
.4

-2
.2 -2

-1
.8

-1
.6

-1
.4

-1
.2 -1

-0
.8

-0
.6

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

t

B
3
,1

(
t
)

B 1,1

0

0.2

0.4

0.6

0.8

1

1.2

-3
-2
.8

-2
.6

-2
.4

-2
.2 -2

-1
.8

-1
.6

-1
.4

-1
.2 -1

-0
.8

-0
.6

-0
.4

-0
.2 0

0
.2

0
.4

0
.6

0
.8 1

t

B
1

,1
(
t
)



Bk,2 
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B0,4 
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Note that the functions given on slides 4 and 5 are translates of this 

function obtained by using (t-1), (t-2) and (t-3) instead of just t, and then 

selecting only a sub-range of t values for each function 



Interpolation and Continuity 

• The knot vector gives a user control over interpolation and continuity 

• If the first knot is repeated three times, the curve will interpolate the 

control point for that knot 

– Repeated knot example: (-3,-3,-3, -2, -1, 0, …) 

– If a knot is repeated, so is the corresponding control point 

• If an interior knot is repeated, continuity at that point goes down by 1 

• Interior points can be interpolated by repeating interior knots 

• A deep investigation of B-splines is beyond the scope of this class 



How to Choose a Spline 

• Hermite curves are good for single segments where you 

know the parametric derivative or want easy control of it 

• Bezier curves are good for single segments or patches where 

a user controls the points 

• B-splines are good for large continuous curves and surfaces 

• NURBS are the most general, and are good when that 

generality is useful, or when conic sections must be 

accurately represented (CAD) 


